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Abstract. The realization of Semantic Web reasoning is central to sub-
stantiating the Semantic Web vision. However, current mainstream re-
search on this topic faces serious challenges, which force us to question
established lines of research and to rethink the underlying approaches.

1 What is Semantic Web Reasoning?

The ability to combine data, mediated by metadata, in order to derive knowledge
which is only implicitly present, is central to the Semantic Web idea. This process
of accessing implicit knowledge is commonly called reasoning, and formal model-
theoretic semantics tells us exactly what knowledge is implicit in the data.1

Let us attempt to define reasoning in rather general terms: Reasoning is about
arriving at the exact answer(s) to a given query. Formulated in this generality,
this encompasses many situations which would classically not be considered rea-
soning – but it will suffice for our purposes. Note that the definition implicitly
assumes that there is an exact answer. In a reasoning context, such an exact
answer would normally be defined by a model-theoretic semantics.2

Current approaches to Semantic Web reasoning, however, which are mainly
based on calculi drawn from predicate logic proof theory, face several serious
obstacles.

– Scalability of algorithms and systems has been improving drastically, but
systems are still incapable of dealing with amounts of data on the order of
magnitude as can be expected on the World Wide Web. This is aggrevated by
the fact that classical proof theory does not readily allow for parallelization,
and that the amount of data present on the web increases with a similar
growth rate as the efficiency of hardware.

– Realistic data, in particular on the web, is generally noisy. Established proof-
theoretic approaches (even those including uncertainty or probabilistic meth-
ods) are unable to cope with this kind of data in a manner which is ready
for large-scale applications.

1 It is rather peculiar that a considerable proportion of so-called Semantic Web re-
search and publications ignores formal semantics. Even most textbooks fail to explain
it properly. An exception is [7].

2 Simply referring to a formal semantics is too vague, since this would also include
procedural semantics, i.e. non-declarative approaches, and thus would include most
mainstream programming languages.



– It is a huge engineering effort to create web data and ontologies which are
of sufficiently high quality for current reasoning approaches, and usually
beyond the abilities of application developers. The resulting knowledge bases
are furthermore severely limited in terms of reusability for other application
contexts.

The state of the art shows no indications that approaches based on logical
proof theory would overcome these obstacles anytime soon in such a way that
large-scale applications on the web can be realized. Since reasoning is central to
the Semantic Web vision, we are forced to rethink our traditional methods, and
should be prepared to tread new paths.

A key idea to this effect, voiced by several researchers (see e.g. [3, 23]) is
to explore alternative methods for reasoning. These may still be based more
or less closely on proof-theoretic considerations, or they may not. They could,
e.g., utilize methods from statistical machine learning or from nature-inspired
computing.

Researchers who are used to thinking in classical proof-theoretic terms are
likely to object to this thought, arguing that a relaxation of strict proof-theoretic
requirements on algorithms, such as soundness and completeness, would pave the
way for arbitrary algorithms which do not perform logical reasoning at all, and
thus would fail to adhere to the specification provided by the formal semantics
underlying the data – and thus jeopardize the Semantic Web vision. While such
arguments have some virtue, it needs to be stressed that the nature of the un-
derlying algorithm is, effectively, unimportant, as long as the system adheres to
the specification, i.e. to the formal semantics.

Imagine, as a thought experiment, a black box system which performs sound
and complete reasoning in all application settings it is made for – or at least
up to the extent to which standard reasoning systems are sound and complete.3

Does it matter then whether the underlying algorithm is provably sound and
complete? I guess not. The only important thing is that its performance is sound
and complete. If the black box were orders of magnitude faster then conventional
reasoners, but somebody would tell you that it is based on statistical methods,
which one would you choose to work with? Obviously, the answer depends on
the application scenario – if you’d like to manage a bank account, you may want
to stick with the proof-theoretic approach since you can prove formally that
the algorithm does what it should; but if you use the algorithm for web search,
the quicker algorithm might be the better choice. Also, your choice will likely
depend on the evidence given as to the correctness of the black box algorithm
in application settings.

This last thought is important: If a reasoning system is not based on proof
theory, then there must be a quality measure for the system, i.e., the system must

3 Usually, they are not sound and complete, although they are based on underlying
algorithms which are, theoretically, sound and complete. Incompleteness comes from
the fact that resources, including time, are limited. Unsoundness comes from bugs
in the system.



be evaluated against the gold standard, which is given by the formal semantics,
or equivalently by the provably sound and complete implementations [23].

If we bring noisy data, as on the web, into the picture, it becomes even clearer
why a fixation on soundness and completeness of reasoning systems is counter-
productive for the Semantic Web: In the presence of such data, even the formal
model-theoretic semantics breaks down, and it is quite unclear how to develop
algorithms based on proof theory for such data. The notions of soundness and
completeness of reasoning in the classical sense appear to be almost meaningless.
But only almost, since alternative reasoning systems which are able to cope with
noisy data can still be evaluated against the gold standard on non-noisy data,
for quality assurance.

In the following, we revisit the role of soundness and completeness for rea-
soning, and argue further for an alternative perspective on these issues (Section
2). We also discuss key challenges which need to be addressed in order to realise
reasoning on and for the Semantic Web, in particular the questions of expres-
sivity of ontology languages (Section 3), roads to bootstrapping (Section 4),
knowledge acquisition (Section 5), and user interfacing (Section6). We conclude
in Section 7.

2 The Role of Soundness, Completeness, and
Computational Complexity

Computational complexity has classically been a consideration for the develop-
ment of description logics, which underlie the Web Ontology Language OWL –
which is currently the most prominent ontology language for Semantic Web rea-
soning. In particular, OWL is a decidable logic. The currently ongoing revision
OWL 2 [6] furthermore explicitly defines fragments, called profiles, with lower
(in fact, polynomial) computational complexity.

Soundness and completeness are central properties of classical reasoning algo-
rithms for logic-based knowledge representation languages, and are thus central
notions in the development of Semantic Web reasoning around OWL. However
performance issues have prompted researchers to advocate approximate reason-
ing for the Semantic Web (see e.g. [3, 23]). Arguing for this approach provokes
radically different kinds of reactions: some logicians appear to be abhorred by
the mere thought, while many application developers find it the most natural
thing to do. Often it turns out that the opposing factions misunderstand the
arguments: counterarguments usually state that leaving the model-theoretic se-
mantics behind would lead to arbitrariness and thus loss of quality. So let it be
stated again explicitly: approximate reasoning shall not replace sound and com-
plete reasoning in the sense that the latter would no longer be needed. Quite
in contrast, approximate reasoning in fact needs the sound and complete ap-
proaches as a gold standard for evaluation and quality assurance. The following
shall help to make this relationship clear.



2.1 Sound but Incomplete Reasoning

There appears to be not much argument against this in the Semantic Web com-
mmunity, even from logicians: they are used to this, since some KR languages,
including first-order predicate logic, are only semi-decidable,4 i.e. completeness
can only be achieved with unlimited time resources anyway. For decidable lan-
guages, however, a sound but incomplete reasoner should always be evaluated
against the gold standard, i.e., against a sound and complete reasoner, in order
to show the amount of incompleteness incurred versus the gain in efficiency. In-
terestingly, this is rarely done in a structured way, which is, in my opinion, a
serious neglect. A statistical framework for evaluation against the gold standard
is presented in [23].

2.2 Unsound but Complete Reasoning

Allowing for reasoning algorithms to be unsound appears to be much more con-
troversial, and the usefulness of this concept seems to be harder to grasp. How-
ever, there are obvious examples. Consider, e.g., fault-detection in a power plant
in case of an emergency: The system shall determine (quickly!) which parts of
the factory need to be shut down. Obviously, it is of highest importantance that
the critical part is contained in the shutdown, while it is less of a problem if
too many other parts are shut down, too.5 Another obvious example is seman-
tic search: In most cases, users would prefer to get a quick set of replies, among
which the correct one can be found, rather than wait longer for one exact answer.

Furthermore, sound-incomplete and unsound-complete systems can some-
times be teamed up and work in parallel to provide better overall performance
(see e.g. [24]).

2.3 Unsound and Incomplete Reasoning

Following the above arguments to their logical conclusion, it should become
clear why unsound and incomplete reasoning has its place among applications.
Remember that there is the gold standard against which such systems should be
evaluated. And obviously there is no reason to stray from a sound and complete
approach if the knowledge base is small enough to allow for it.

The most prominent historic example for an unsound and incomplete yet
very successful reasoning system is Prolog. Traditionally, the unification algo-
rithm, which is part of the SLD-resolution proof procedure used in Prolog [13],
is used without the so-called occurs check, which, depending on the exact imple-
mentation, can cause unsoundness [16].6 This omission was made due to reasons

4 Some non-montonic logics are not even semi-decidable.
5 This example is due to Frank van Harmelen, personal communication.
6 To obtain a wrong answer, execute the query ?-p(a). on the logic program consisting

of the two clauses p(a) :- q(X,X). and q(X,f(X))., e.g. under SWI-Prolog. – The
example is due to Markus Krötzsch.



of efficiency, and turned out to be feasible since it rarely causes a problem for
Prolog programmers.

Likewise, it is not unreasonable to expect that carefully engineered unsound
and incomplete reasoning approaches can be useful on the Semantic Web, in
particular when sound and complete systems fail to provide results within a
reasonable time span. Furthermore, there is nothing wrong with using entirely
alternative approaches to this kind of reasoning, e.g., approaches which are not
based on proof theory.

To give an example of the latter, we refer to [2], where the authors use a
statistical learning approach using support vector machines. They train their
machine to infer class membership in ALC, which is a description logic related
to OWL, and achieve a 90% coverage. Note that this is done without any proof
theory, other than to obtain the training examples. In effect, their system learns
to reason with high coverage without performing logical deduction in the proof-
theoretic sense.

For a statistical framework for evaluation against the gold standard we refer
again to [23].

2.4 Computational Complexity and Decidability

Considerations on computational complexity and decidability have been driving
research around description logics, which underlie OWL, from the beginning. At
the same time, there are more and more critical voices concerning the fixation
of that research on these issues, since it is not quite clear how practical systems
would benefit from these. Indeed, theoretical (worst-case) computational com-
plexity is hardly a relevant measure for the performance of real systems. At the
same time, decidability is only guaranteed assuming bug-free implementations–
which is an unrealistic assumption –, and given enough resources – which is also
unrealistic since the underlying algorithms often require exponential time in the
worst case.

The misconception underlying these objections is that computational com-
plexity and decidability are not practial measures which have a direct meaning
in application contexts. They are rather a priori measures for language and al-
gorithm development, and the recent history of OWL language development
indicates that these a priori measures have indeed done a good job. It is obvi-
ously better to have such theoretical means for the conceptual work in creating
language features, than to have no measures at all. And indeed this has worked
out well, since e.g. reasoning systems based on realistic OWL knowledge bases
currently seem to behave rather well despite the high worst-case computational
complexity.

Taking the perspective of approximate reasoning algorithms as laid out ear-
lier, it is actually a decisively positive feature of Semantic Web knowledge rep-
resentation languages that systems exist which can serve as a gold standard
reference. Considering the difficulties in other disciplines (like Information Re-
trieval) in creating gold standards, we indeed are delivered the gold standard on
a silver plate. We can use this to an advantage.



3 Diverse Knowledge Representation Issues

Within 50 years of KR research, many issues related to the representation of non-
classical knowledge have been investigated. Many of the research results obtained
in this realm are currently carried over to ontology languages around OWL,
including abductive reasoning, uncertainty handling, inconsistency handling and
paraconsistent reasoning, closed world reasoning and non-monotonicity, belief
revision, etc.

However all these approaches face the same problems that OWL reasoning
faces, foremost scalability and the dealing with realistic noisy data.7 Indeed un-
der most of these approaches, runtime performance becomes worse, since the
reasoning problems generally become harder in terms of computational com-
plexity.

Nevertheless, research on logical foundations of these knowledge represen-
tation issues, as currently being carried out, is needed to establish the gold
standard. At this time there is a certain neglect, however, in combining several
paradigms, e.g. it is quite unclear how to marry paraconsistent reasoning with
uncertainty handling.

Research into enhancing expressivity of ontology languages can roughly be
divided into the following.

– Classical logic features: This line of research follows the well-trodden path
of extending e.g. OWL with further expressive features, while attempting to
retain decidability and in some cases low computational complexity. Some
concrete suggestions for next steps in this direction are given in the appendix.

– Extralogical features: These include datatypes and additional datastruc-
tures, like e.g. Description Graphs [19].

– Supraclassical logic: Logical features related to commonsense reasoning like
abduction and explanations (e.g., [8]), paraconsistency (e.g., [15]), belief re-
vision, closed-world (e.g., [4]), uncertainty handling (e.g., [10, 14]), etc. There
is hardly any work investigating approximate reasoning solutions for supra-
classical logics.

Investigations into these issues should first establish the gold standard fol-
lowing sound logical principles including computational complexity issues. Only
then should extensions towards approximate reasoning be done.

4 Bootstrapping Reasoning

How to get from A (today) to B (reasoning that works on the Semantic Web)?
I believe that a promising approach lies in bootstrapping existing applications
which use little or no reasoning, based e.g. on RDF. The idea is to enhance

7 I’m personally critical about fuzzy logic and probabilistic logic approaches in practice
for Semantic Web issues. Dealing with noisy data on the web does not seem to easily
fall in the fuzzy or probabilistic category. So probably new ideas are needed for these.



these applications very carefully with a bit more reasoning, in order to clearly
understand the added value and the difficulties one is facing when doing this. A
(very) generic workflow for the bootstrapping may be as follows.

1. Identify an (RDF) application where enhanced reasoning would bring added
value.

2. Identify ontology language constructs which would be needed for expressing
the knowledge needed for the added value.

3. Identify an ontology language (an OWL profile or an OWL+Rules hybrid)
which covers these additional language constructs.

4. Find a suitable reasoner for the enhanced language.
5. Enhance the knowledge base and plug the software components together.

The point of these exercises is not only to show that more reasoning capa-
bilities bring added value, but also to identify obstacles in the bootstrapping
process.

5 Overcoming The Ontology Acquisition Bottleneck

The ontology acquisition bottleneck for logically expressive ontologies comes
partly from the fact that sound and complete reasoning algorithms work only
on carefully devised ontologies, and in many cases it needs an ontology expert
to develop them. Creating such high-quality ontologies is very costly.

A partial solution to this problem is related to (1) noise handling and (2) the
bootstrapping idea. With the current fixation on sound and complete reasoning
it cannot be expected that usable ontologies (in the sound and complete sense)
will appear in large quantities e.g. on the web. However, it is conceivable that
e.g. Linked Open Data8 (LoD) could be augmented with more expressive schema
data to allow e.g. for reasoning-based semantic search. The resulting extended
LoD cloud would still be noisy and not readily usable with sound and complete
approaches. So reasoning approaches which can handle noise are needed. This
is also in line with the bootstrapping idea: We already have a lot of metadata
available, and in order to proceed we need to make efforts to enhance this data,
and to find robust reasoning techniques which can deal with this real-world noisy
data.

6 Human Interfacing

Classical ontology engineering often has the appearance of expert sysem creation,
if used off the web. On the web, it often lacks the reasoning component.

As argued in this paper, in order to advance the Semantic Web vision – on
and off the web – we need to find ways to reason with noisy and incomplete data
in a realistic and pragmatic manner. This necessity is not reflected by current
ontology engineering research.
8 http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData/



In order to advance towards ontology reasoning applications, we need ontol-
ogy engineering systems which

– support reasoning bootstrapping,
– include multiple reasoning support (i.e. multiple reasoning algorithms, clas-

sical and non-classical), and
– are made to cope with noisy and uncertain data.

We need to get away from thinking about ontology creation as coding in
the programming sense. This can only be achieved by relaxing the reasoning
algorithm requirements, i.e. by realising reasoning systems which can cope with
noisy and uncertain data.

7 Putting It All Together

In this paper I argue for roads to realising reasoning on and for the Semantic
Web. Efforts on several fronts are put forth:

– The excellent research results and ongoing efforts in establishing sound and
complete proof-theory-based reasoning systems need to be complemented by
investigations into alternative reasoning approaches, which are not necessar-
ily based on proof theory, and can handle noisy and uncertain data.

– Reasoning bootstrapping should be investigated seriously and on a broad
front, in order to clearly show added value, and in order to identify challenges
in adopting ontology reasoning in applications.

– Ontology engineering environments should systematically accommodate rea-
soning bootstrapping and the support of multiple reasoning paradigms, clas-
sical and non-classical.

Let us recall a main point of this paper: reasoning algorithms do not have to
be based on proof theory. But they have to perform well if compared with the
gold standard.

In a sense, the laid out lines of research lead us a bit further away from
knowledge representation (KR), and at the same time they do a small step
towards non-KR-based intelligent systems: Not all the intelligence must be in the
knowledge base (with corresponding sound and complete reasoning algorithms).
We must facilitate intelligent solutions, including machine learning and data
mining, and statistical inductive methods, to achieve the Semantic Web vision.
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A Appendix: Suggestions for OWL 3

Abstract. With OWL 2 about to be completed, it is the right time to
start discussions on possible future modifications of OWL. We present
here a number of suggestions in order to discuss them with the OWL
user community. They encompass expressive extensions on polynomial
OWL 2 profiles, a suggestion for an OWL Rules language, and expressive
extensions for OWL DL.

A.1 Introduction

The OWL community has grown with breathtaking speed in the last couple of
years. The improvements coming from the transition from OWL 1 [17] to OWL
2 [25] are an important contribution to keeping the language alive and in synch
with the users. While the standardization process for OWL 2 is currently coming
to a successful conclusion, it is important that the development process does not
stop, and that discussions on how to improve the language continue.

In this appendix, we present a number of suggestions for improvements to
OWL DL,9 which are based on some recent work. We consider it important that
such further development is done in alignment with the design principles of OWL,
and in particular with the description logic perspective which has governed its
creation. Indeed, this heritage has been respected in the development of OWL
2, and is bringing it to a fruitful conclusion. There is no apparent reason for
straying from this path.

In particular, the following general rationales should be adhered to, as has
happened for OWL 1 and OWL 2.

– Decidability of OWL DL should be retained.
– OWL DL semantics should be based on a first-order predicate logic semantics

(and as such should, in particular, be essentially open-world and monotonic).
– Analysis of computational complexities shall govern the selection of language

features in OWL DL.

Obviously, there are other important issues, like basic compatibility with
RDF, having an XML-based syntax, backward-compatibility, etc., but we take
these for granted and do not consider them to be major obstacles as long as
future extensions of OWL are developed along the inherited lines of thinking.

The suggestions which we present below indeed adhere to the design ra-
tionales just laid out. They concern different aspects of the language, and are
basically independent of each other, i.e. they can be discussed separately. At the
same time, however, they are also closely related and compatible, so that it is
reasonable to discuss them together.

9 OWL DL has always played a special role in defining OWL – it is the basis from
which OWL Full and other variants, like OWL Lite or the OWL 2 profiles, are
developed. So in this appendix we focus on OWL DL.



In Section A.2, we suggest a rule-based syntax for OWL. The syntax is ac-
tually of a hybrid nature, and allows e.g. class descriptions inside the rules.
Nevertheless, it captures OWL with a syntax which is essentially a rule-syntax.

In Section A.3, we suggest the addition of Boolean role expressions to the
arsenal of language constructs available in OWL. We also explain which caution-
ary measures need to be taken when this is done, in order to not lose decidability
and complexity properties.

In Section A.4, we suggest considerably extending OWL by including the
DL-safe variable fragment of SWRL [9] together with the DL-safe fragment [21]
of SWRL.

In Section A.5, we propose a tractable profile, called ELP, which encompasses
OWL 2 EL, OWL 2 RL, most of OWL 2 QL, and some expressive means which
are not contained in OWL 2. It is currently the most expressive polynomial
language which extends OWL 2 EL and OWL 2 RL, and is still relatively easy
to implement.

In Section A.6, we conclude.
Obviously, we do not have the space to define all these extensions in detail,

or to discuss all aspects of them exhaustively. We thus strive to convey the
main ideas and intuitions, and refer to the indicated literature for details. In the
definitions and discussions, we will sometimes drop details, or remain a bit vague
(and thus compromise completeness of our exhibition), in order to be better able
to focus on the main arguments. We believe that this serves the discussion better
than being entirely rigorous on the formal aspects.

A.2 An OWL Rules Language

The alignment of rule languages with OWL (and vice versa) has been a much
(and sometimes heatedly) discussed topic. The OWL paradigm is quite different
in underlying intuition, modelling style, and expressivity than standard rule
language paradigms. Recent efforts involving OWL and rules attempt to merge
the paradigms in order to get the best of both worlds.

The advance from OWL 1 to OWL 2 indeed brings the two paradigms closer
together. In particular, a considerable variety of rules, understood as Datalog
rules with unary and binary predicates under a first-order predicate logic seman-
tics, can be translated with some effort directly into OWL 2 DL. This observation
paves the way for a rule-based syntax for OWL, which we will briefly present
below. The suggestions in this section are based on [11].

Given any description logic D, a D-rule is a rule of the form

A1 ∧ · · · ∧An → A,

where A and Ai are expressions of the form C(x) or R(x, y), where C are (possi-
bly non-atomic) concept expressions over D, R are role names (or role expressions
if allowed in D), and x, y are either variables or individal names (y may also be a
datatype value if this is allowed in D), and the following conditions are satisfied.



Man(x) ∧ hasBrother(x, y) ∧ hasChild(y, z)→ Uncle(x)

ThaiCurry(x)→ ∃contains.FishProduct(x)

kills(x, x)→ PersonCommittingSuicide(x)

PersonCommittingSuicide(x)→ kills(x, x)

NutAllergic(x) ∧NutProduct(y)→ dislikes(x, y)

dislikes(x, z) ∧Dish(y) ∧ contains−(z, y)→ dislikes(x, y)

worksAt(x, y) ∧University(y) ∧
∧supervises(x, z) ∧ PhDStudent(z)→ professorOf(x, z)

Mouse(x) ∧ ∃hasNose.TrunkLike(y)→ smallerThan(x, y)

Fig. 1. A SROIQ-Rules knowledge base.

– The pattern of variables in the rule body forms a tree. This is to be under-
stood in the sense that whenever there is an expression R(x, y) with a role
R and two variables x, y in the rule body, then there is a directed edge from
x to y – hence each body gives rise to a directed graph, and the condition
states that this graph must be a tree. Note that individuals are not taken
into account when constructing the graph.10 Note also that the rule body
must form a single tree.

– The first argument of A is the root of the just mentioned tree.

Semantically, SROIQ-rules come with the straightforward meaning under a
first-order predicate logic reading, i.e., the implication arrow is read as first-order
implication, and the free variables are considered to be universally quantified.

A D-Rules knowledge base consists of a (finite) set of D-rules,11 which sat-
isfies additional constraints, which depend on D. These constraints guarantee
that certain properties of D, e.g., decidability, are preserved.

For OWL 2 DL, these additional constraints specify regularity conditions and
restrictions on the use of non-simple roles, similarly to SROIQ(D) – we omit
the details. Examples for SROIQ-rules are given in Figure 1.

The beauty of SROIQ-rules lies in the fact that any SROIQ-Rules knowl-
edge base can be transformed into a SROIQ knowlege base – and that the trans-
formation algorithm is polynomial. This means that SROIQ-rules are nothing
more or less than a sophisticated kind of syntactic sugar for SROIQ. It is easy
to see that, in fact, any SROIQ-axiom can also be written as a SROIQ-rule,
so that modelling in SROIQ can be done entirely within the SROIQ-Rules
paradigm.

In order to be a useful language, it is certainly important to develop con-
venient web-enabled syntaxes. Such a syntax could be based on the Rule In-
terchange Format (RIF) [1], for example, which is currently in the final stages

10 The exact definition is a bit more complicated; see [11].
11 Notice the difference in spelling: uppercase vs. lowercase.



∃(testifiesAgainst u relativeOf).> v ¬UnderOath

hasParent v hasFather t hasMother

hasDaughter v hasChild u ¬hasSon

Fig. 2. Examples for Boolean role constructors

of becoming a W3C Recommendation. A SROIQ-Rules syntax could also be
defined as a straightforward extension of the OWL 2 Functional Style Syntax
[20].

Proposal: OWL 3 should have a rule-based syntax based on Description Logic
Rules.

A.3 Boolean Role Constructors

Boolean role constructors, i.e., conjunction, disjunction, and negation for roles,
can be added to description logics around OWL under certain restrictions, with-
out compromising language complexity. Since they provide additional modelling
features which are clearly useful in the right circumstances (see Figure 2), there
is no strong reason why they shouldn’t be added to OWL. The following sum-
marizes results from [22].

All Boolean role constructors can be added to SROIQ without compromis-
ing its computational complexity, as long as the constructors involve only simple
roles – the resulting description logic is denoted by SROIQBS.

Likewise, OWL 2 EL can be extended with role conjunction without losing
polynomial complexity of the language. Regularity requirements coming from
SROIQ can be dropped (they are also not needed for polynomiality of the
description logic EL++, which is well-known). Likewise, the extension of OWL
2 RL with role conjunctions is still polynomial.

While the complexity results just given are favorable, it has to be noted that
suitable algorithms for reasoning with SROIQBS still need to be developed.
Algorithms for the respective extensions of OWL 2 EL and OWL 2 RL, however,
can easily be obtained by adjusting known algorithms for these languages – see
also Section A.5.

Proposal: OWL 3 should allow the use of Boolean role constructors wherever
appropriate.

A.4 DL-safe Variable SWRL

SWRL [9] is a very natural extension for description logics with first-order pred-
icate logic rules. Despite being a W3C Member Submission rather than a W3C
Recommendation, it has achieved an extremely high visibility. However, in its



original form, SWRL is undecidable, i.e., it does not closely follow the design
guidelines we have listed in the introduction.

A remedy for the decidability issue is the restriction of SWRL rules to so-
called DL-safe rules [21]. Syntactically, DL-safe rules are rules of the form

A1 ∧ · · · ∧An → A

as in Section A.2, but without the requirements on tree-shapedness. Semanti-
cally, however, they are read as first-order predicate logic rules, but with the
restriction that variables in the rules may bind only to individuals which are
present in the knowledge base.12 In essence, this limits the usability of DL-safe
SWRL to applications which do not involve TBox reasoning.

It is now possible to generalize DL-safe SWRL without compromising decid-
ability. The underlying idea has been spelled out in a more limited setting in
[12] (see also Section A.5), but it obviously carries over to SROIQ.

In order to understand the generalization, we need to return to SROIQ-rules
as defined in Section A.2. Recall that the tree-shapedness of the rule bodies
is essential, but that role expressions involving individuals are ignored when
checking for the tree structure.

The idea behind DL-safe variable SWRL is now to identify those variables in
rule bodies which violate the required tree structure, and to define the semantics
of the rules such that these variables may only bind to individuals present in
the knowledge base – these variables are called DL-safe variables. The other
variables are interpreted as usual under the first-order predicate logic semantics.

An alternative way to describe the same thing is to say that a rule quali-
fies as DL-safe variable SWRL if replacing all DL-safe variables in the rule by
individuals results in an allowed SROIQ-rule.

As an example, consider the rule

C(x) ∧R(x, w) ∧ S(x, y) ∧D(y) ∧ T (y, w)→ V (x, y),

which violates the requirement of tree-shapedness because there are two different
paths from x to w. Now, if we replace w by an individual, say o, then the resulting
rule

C(x) ∧R(x, o) ∧ S(x, y) ∧D(y) ∧ T (y, o)→ V (x, y)

12 The original definition is different, but equivalent. It required that each variable
occurred in an atom in the rule body, which is not an atom of the underlying de-
scription logic knowledge base. The usual way to achieve this is by introducing an
auxiliary class O which contains all known individuals, and adding O(x) to each rule
body, for each variable in the rule. Our definition instead employs a redefinition of
the semantics, which appears to be more natural in this case. Essentially, the two
formulations are equivalent.



is a SROIQ-rule.13 Hence, the rule

C(x) ∧R(x, ws) ∧ S(x, y) ∧D(y) ∧ T (y, ws)→ V (x, y),

where ws is a DL-safe variable, is a DL-safe variabe SWRL rule. Note that the
other variables can still bind to elements whose existence is guaranteed by the
knowledge base but which are not present in the knowledge base as individuals,
which would not be possible if the rule were interpreted as DL-safe.

In principle, naive implementations of this language could work with multiple
instantiations of rules containing DL-safe variables, but no implementations yet
exist. In principle, they should not be much more difficult to deal with than
DL-safe SWRL rules.

Proposal: OWL 3 DL should incorporate DL-safe SWRL and DL-safe variable
SWRL.

A.5 Pushing The Tractable Profiles

The OWL 2 Profiles document [18] describes three designated profiles of OWL
2, known as OWL 2 EL, OWL 2 RL, and OWL 2 QL. These three languages
have been designed with different design principles in mind. They correspond
to different description logics, have different expressive features, and can be
implemented using different methods.

The three profiles have in common that they are all of polynomial complex-
ity, i.e., they are rather inexpressive languages, despite the fact that they have
already found applications. While having three polynomial profiles is fine due
to their fundamental differences, the question about maximal expressivity while
staying in polynomial time naturally comes into view.

The ELP language [12] is a language with polynomial complexity which prop-
erly contains both OWL EL and OWL RL. It also contains most of OWL QL.14

Furthermore, it still features rather simple algorithms for reasoning implemen-
tations.

More precisely, ELP has the following language features.

– It contains OWL 2 EL Rules, i.e. EL++-rules as defined in Section A.2.15

Note that EL++-rules cannot be converted to EL++ (i.e. OWL 2 EL) using
the algorithm which converts SROIQ-rules to SROIQ.

13 This rule can be expressed in SROIQ by the knowledge base consisting of the three
statements

C u ∃R.{o} v ∃R1.Self

D u ∃T.{o} v ∃R2.Self and

R1 ◦ S ◦R2 v V.

See [11].
14 Role inverses cannot be expressed in ELP.
15 EL++-rules are D-rules with D = EL++.



NutAllergic(x) ∧NutProduct(y)→ dislikes(x, y)
Vegetarian(x) ∧ FishProduct(y)→ dislikes(x, y)

orderedDish(x, y) ∧ dislikes(x, y)→ Unhappy(x)
dislikes(x, vs) ∧Dish(y) ∧ contains(y, vs)→ dislikes(x, y)

orderedDish(x, y)→ Dish(y)
ThaiCurry(x)→ contains(x, peanutOil)
ThaiCurry(x)→ ∃contains.FishProduct(x)

→ NutProduct(peanutOil)
→ NutAllergic(sebastian)
→ ∃orderedDish.ThaiCurry(sebastian)
→ Vegetarian(markus)
→ ∃orderedDish.ThaiCurry(markus)

Fig. 3. A simple example ELP rule base about food preferences. The variable vs is
assumed to be DL-safe.

– It allows role conjunctions for simple roles.
– It allows the use of DL-safe variable SWRL rules, in the sense that replace-

ment of the safe variables by individuals in a rule must result in a valid
EL++-rule.

– General DL-safe Datalog16 rules are allowed.

The last point – allowing general DL-safe Datalog rules – is a bit tricky. As
stated, it destroys polynomial complexity. However, if there is a global bound on
the number of variables allowed in Datalog rules, then polynomiality is retained.
Obviously, one would not want to enforce such a global bound; nevertheless
the result indicates that a careful and limited use of DL-safe Datalog rules in
conjunction with a polynomial description logic should not in general have a
major impact on reasoning efficiency.

Since ELP is fundamentally based on EL++-rules, it features rules-style mod-
elling in the sense in which SROIQ-rules provide a rules modelling paradigm
for SROIQ. An example knowledge base can be found in Figure 3.

As for implementability, reasoning in ELP can be done by means of a poly-
nomial-time reduction to Datalog, using standard Datalog reasoners. Note that
TBox-reasoning can be emulated even if the Datalog reasoner has no native
support for this type of reasoning. The corresponding algorithm is given in [12].
An implementation is currently under way.

Proposal: OWL 3 should feature a designated polynomial profile which is as
large as possible, based on ELP.

A.6 Conclusions

Following the basic design principles for OWL, we made four suggestions for
OWL 3.
16 One could also simply allow DL-safe SWRL rules.



– OWL 3 should have a rule-based syntax based on Description Logic Rules.
– OWL 3 should allow the use of Boolean role constructors.
– OWL 3 should incorporate DL-safe SWRL and DL-safe variable SWRL.
– OWL 3 should feature a designated polynomial profile which is as large as

possible, based on ELP.

We are aware that these are only first suggestions, and that a few open points
remain to be addressed in research. We hope that our suggestions stimulate
discussion which will in the end lead to a favorable balance between application
needs and language development from first principles.


